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Fig. 4. Theoretical value and measured value of resonant frequency of
the ridge guide resonator with planar circuit of mounted waveguide.
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obtaining the resonant frequency by considering the end
effect and the guided wave length of a ridge guide as (12):

M) "

Since A{" and A/ of (12) are the functions of w, the
values of the resonant frequency were calculated by
computer. The results and the measured values are shown
in Fig, 4.
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Propagation Through Hollow Cylindrical
Anisotropic Dielectric Guides

B. B. CHAUDHURI axp D. K. PAUL

Abstract-—Hybrid mode in a circular hollow anisotropic dielectric guide
is reported here. The use of such guide in fabricating gas laser is compared
with its isotropic counterpart. It has been shown that proper choice of
anisotropic material can increase the net gain of gas lasers.

OLLOW dielectric waveguides at optical and in-
frared frequency have found wide use in high-pres-
sure laser oscillators and amplifiers. The waveguides are
low-loss if the cross-section dimensions are many wave-
lengths and the interior walls have an optical finish.
However, the gain of the amplifier falls approximately as
the square root of the cross-sectional area, so that there is
an optimum dimension for which net gain is maximum.
Isotropic hollow guides have been analyzed by different
authors [1], [2].
The following note analyzes hollow circular waveguide
with anisotropic dielectric, where it has been shown that

Manuscript received November 22, 1977; revised May 4, 1978.
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for the dominant hybrid mode HE,, at 6328 A a net gain
of 1.5 dB/m over that of the isotropic guide can be
achieved by proper choice of anisotropy.

Consider a hollow waveguide of radius r, with axis
coinciding with the z-axis of (r.¢,z) coordinate system.
The surrounding medium has dielectric constants ¢, in
z-direction and ¢ in the transverse plane. Solving
Maxwell’s equation and applying boundary condition to
the fields, we arrive at the following transcendental equa-
tion:

u Jn(u) - 0_2 Hn(UZ)

[1 0w 1 Hiw) |[ 1 ()
u J,(u) o H(v)

€-z H);(DZ) }

z(n“h)%(?@)(“z‘*) "

K, woro?

where 4 is the propagation constant in the z-direction and
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a*=¢, [, the anisotropy parameter, with € =¢, /¢,
vi= [wz,uger - hz] r
vy =[ wge, — (h/a)*]r3

u?=[wpoeg—h*]r (2)
€. It are the permittivity and permeability of free space.
J, and H, denote conventional Bessel and Hankel func-
tion of the nth order and first kind.

If rg/A>1, |h|~Ky=wV pyey . Also v, v,>1 since
€ > 1, € > 1. Neglecting the second-order terms in (u/v,)
where (=1, 2 and using large argument approximation of
Hankel function, we obtain

1 &
—+
v, U,

Jn—l(u) NJ_I’_I
J(u) — 2

: 3)

Since the right-hand side of (3) is a small quantity we can
assume that the solution of (3) is a perturbation §,,, over
U, where J, (U, )=0. Hence, writing u=U,,(1+6

we get
i1 €
s o~ L=
m 2 ( v, + 02)
J(1+&a)
2Koro(e— 1)

)

Using (2) we obtain
— 1 Unm g J Unm 2 1
h‘Ko{l E(rOKO) }ﬁ( K, ) =
(4)

The imaginary part of (4) accounts for the loss L. The
loss factor (14 €&a)/(€ —1)"/2 is a function of anisotropy
parameter and is plotted against €. for different a in Fig,
. It is seen that the term has a minimum for 0 < a < 2,
and for a > 1 it is always less than that for a = 1. Also,
the minimum shifts towards left for larger a.

For dominant HE,, mode in He—Ne laser, A =0.6328 X
107 m, U,,=2.405. The gain is G=A4/r, where the

constant 4220.00066 dB [2]. Converting L in decibels per

meter the net gain is optimized with respect to r,. The
optimum ry is

1+ €a
(e-n"" |

rO'opt= \/—3_ (B/A)As

1+¢&,a

(-1 } *

where

8.686
5= 255

Unm 2
2a )

The maximum net gain is
2 i
(G - L)max = _B_I/E (A/3)3/2X dB/m

(G — L), 1s tabulated in Table I for different a, where ¢,
and rol,,, are values needed for maximum net gain. It is
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ATTENUATION FACTOR
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Fig. 1. Effect of anisotropy on the attenuation factor.

TABLE I
OpTiMUM DESIGN PARAMETERS IN A DIELECTRIC RESONATOR [AT
A=6328 A]. EFFECT OF ANISOTROPY IS INCLUDED IN 2

a Ez rolopt , mm (G_L)max , db/m
1 3 0.05644 7.7961
1.1 2.6 0.05524 7.9650
1.2 2.2 0.05351 8.2230
1.3 2,0 0,05198 8.4637
1.4 1.7 0,05052 8,7101
1.5 1.6 0.04942 8,9037
1.6 1.4 0.04832 9,1068
1.7 1.3 0,04732 9.2987

seen that the net gain is better than in isotropic case and
an improvement of —1.5 dB/m can be achieved for
a=1..

A physical interpretation of the effect may be given as
follows. The loss factor contains contribution due to TE
and TM part of the hybrid wave given, respectively, by
1/(—1)"/? and €a/(e.—1)"/*=¢ /a(e,—1)!/2 For iso-
tropic guide (@ = 1), the TE part is the same while the TM
part is € /(¢— 1)/2. Absorbing a in r, of imaginary part of
(4) we can say that the TM wave in anisotropic guide sees
a different size of the guide—larger than its physical size
when a > 1. The loss decreases as the cube of this effec-
tive radius.

The effect can be used successfully in fabricating gas
laser system. The choice of material depends on its anisot-
ropy parameter, Larger anisotropy gives better net gain.
For example, maximum net gain improvement for
tourmaline (€, =2.689, a=1.012) over its isotropic coun-
terpart (¢, =¢,=¢) is 0.031 dB/m while for calcite (¢,=
2.7556, a=1.114), and titania (€, =7.3411, a=1.118) the
respective improvements are 0.306 dB/m and 0.346
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dB/m. But calcite is preferable since the net gain (9.9857
dB/m) is better than with titania (7.4596 dB/m). This is
s0 because it can be shown that the loss factor is mini-
mized around € =3, a fact true for isotropic case also [2].
It infers that a material with €~3 and a=>~2 is most
suitable for best output.
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Toroidal Resonator with a Conducting
Separating Wall

RUDOLF DEUTSCH

Abstract—The exact solution of Maxwell’s equations for electromag-
netic waves in toroidal resonators with a separating wall was obtained. The
components of the intensities of the electric and magnetic fields, the
charge densities on the toroidal surface and on the separating wall, the
magnetic field lines, and the dispersion relation were determined. Both the
empty torus and the coaxial torus were studied. A general method to
determine in an easy way the magnetic field lines from the structure of the
Hertz vector is given.

I. INTRODUCTION

T WAS RECENTLY shown [1]-[3] that the vectorial

Helmholtz equation for electromagnetic waves in
toroidal coordinates can be reduced to the scalar Helm-
holtz equation, and solutions of this equation for some
cases important in electronics and in plasma physics were
obtained. It is possible to get an exact solution with the
periodicity of 47 [2]. This corresponds to an empty or
coaxial torus containing a conducting separating wall
(Fig. 3). In this paper, we shall study this solution in

detail.
In the first part of the paper, we show that it is possible

to introduce a generating function, related to the Carte-
sian components of the Hertz vector, and this function
describes the magnetic surfaces of the stationary waves,

This provides a general, easy method to construct the
magnetic field lines. A series of examples of magnetic
surfaces are given.

In the second part, we formulate the generating func-
tion for the exact solution with periodicity 47 and we
describe the electromagnetic field in the resonators with a
separating wall. The components of the electric and mag-
netic field's intensities, the magnetic field lines, and the
charge densities on the conducting toroidal surface and on
the separating wall are determined. Both the empty torus
and the coaxial torus are studied.

In the third part of the paper, some particular examples
are described.

II. THE STRUCTURE OF THE MAGNETIC FIELD OF
THE STATIONARY WAVES

The intensity of the magnetic field can be expressed
through the Hertz vector using the well-known relation

()
Writing the differential equations for the magnetic field

lines and inserting the field components from (1), we get,
for toroidal systems, the following equations:

B=iwey g, curl P.

or d(pPy) 9
_ P 4 = (1—
dP,= % dp+ % d6 + 3 (1—pcos @)P, do
aP d(pP a
d(pP0)=7370 dp+ (206’) do + -@(l—p CcOs 0)P¢ do
apP a(pP
d[(1—p cos 0)P¢]=-5¢Tp dp+ (g;) a9+ %(l~p cos #) P, do 2
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where p, 4, and ¢ are the toroidal coordinates.
In the case of the electromagnetic waves, the compo-
nents of the Hertz vector can be expressed through a

0018-9480,/79,/0200-0172800.75 ©1979 IEEE



